HERZ Datasheet collection. Actuators.

List of contents:

- Rotary actuator 7712 33,35 for ball valves with/without SUT*... 2
- Valve actuator with SUT* postioner 7712 32,21…... 8
- Damper actuator with/without SUT* 7712 25, 27 .. 15
- Valve actuator 7712 30, 31 .. 20
- Valve actuator 7712 28, 29 .. 28
- Selection matrix ... 33

General information

Intended use

Products, which are represented in this document are suitable only for the purpose intended by the manufacturer, as described in the "Description of operation" section.
All related product regulations must also be adhered to. Changing or converting of the products is not admissible.

Outdoor installation

We recommend protecting the devices from the weather if they are installed outside buildings.

Disposal

When disposing of the product, observe the currently applicable local laws.

Selection matrix

In order to select a right actuator please refer to the selection matrix. The procedure is as follows: green marked cells in the table means that the actuator is suitable to work with corresponding valve. Order numbers in green highlighted cells corresponds to the adapter which has to be ordered separately. If the cell is marked with green color, but has no order number inside, this means that actuator is suitable for the direct mounting without additional adapters.

* SUT functionality combines all possible operating modes and control options in one actuator

HERZ - Rotary actuator for ball valves

- Dimensions in mm

Models

1771233 Rotary actuator for ball valves
Torque 8 Nm, Voltage AC 230 V, Control: 2-/3-point for HERZ ball valves $12117 \ldots$
1771235 Rotary actuator for ball valves Torque 8 Nm, Voltage AC/DC 24 V, Control: 2-/3-point, constant for HERZ ball valves $12117 .$.

© Features

17712 33:

- For controllers with a switching output (2-/3-point control)
- Fitted to ball valves up to DN 50 without the need to use tools
- Synchronous motor with electronic activation and cut-out
- Maintenance-free gear unit
- Gear unit can be disengaged in order to position the ball valve manually (using the lever)
- Bracket and bayonet ring made of glass-fibre-reinforced plastic for fitting onto ball valve
- Fitting vertically upright to horizontal, not suspended

17712 35:

- For controllers with constant output $(0 . .10 \mathrm{~V})$ or switching output (2-/3-point control)
- Assembly with ball valve without the use of tools
- Stepping motor with SUT electronic control unit
- Electronic force-dependent motor cut-off
- Automatic recognition of applied control signal (continuous or switched)
- Coding switch for selection of characteristic and running time ($35 \mathrm{~s}, 60 \mathrm{~s}, 120 \mathrm{~s}$)
- Type of characteristic (linear/quadratic/equal-percentage) can be set on the actuator
- Direction of operation can be selected directly on the cable
- Maintenance-free gear unit
- Gear unit can be disengaged in order to position the ball valve manually (using the lever)
- Bracket and bayonet ring made of glass-fibre-reinforced plastic for fitting onto ball valve

(0) Technical data

General
Ambient conditions
Admissible ambient temperature
Admissible ambient humidity
Temperature of medium

Construction
Weight $\quad 0,7 \mathrm{~kg}$
Housing
Housing material

17712 33:

Power supply
Supply voltage 230 V~
Power cable
Response time
Angle of rotation
Control

Standards and directives
Type of protection
IP 54 acc. to EN 60529
Protection class
Over-voltage categories
Degree of contamination

CE conformity according to
$\pm 15 \%, 50 \ldots 60 \mathrm{~Hz}$
$1,2 \mathrm{~m}, 3 \times 0,75 \mathrm{~mm} 2$
Min. 200 ms
90°
2-/3-point

II acc. to IEC 60730
III

II
$-10 . .55^{\circ} \mathrm{C}$
$5 . .95 \%$ rF without condensation
Max. $100^{\circ} \mathrm{C}$

Lower section black, upper section red
Fire-retardant plastic

Directive 2006/95/EC EN 60730-1/EN 60730-2-14
EMV Directive 2004/108/EC EN 61000-6-1, EN 61000-6-2 EN 61000-6-3, EN 61000-6-4
17712 35:
Power supply
Supply voltage $24 \mathrm{~V} \sim$
Supply voltage $24 \mathrm{~V}=$
Power consumption
Runnning time
Angle of rotation
Response time
Power cable
$\pm 20 \%, 50 \ldots 60 \mathrm{~Hz}$
-10\%...20\%
5,4 W/9,5 VA
$35 / 60 / 120$ s
90°
200 ms
$1,2 \mathrm{~m}, 5 \times 0,5 \mathrm{~mm}^{2}$

Positioning signal y
Positioning feedback signal
Starting point U0
Control span ΔU
Switching range Xsh
Installation
$0 . .10 \mathrm{~V}, \mathrm{Ri}>100 \mathrm{k} \Omega$
$0 . .10 \mathrm{~V}$, Load $>10 \mathrm{k} \Omega$
0 V or 10 V
10 V
200 mV
vertically upright to horizontal, not suspended

Standards and Directives

Type of protection
Protection class
CE conformity according to

IP54 nach EN 60529
III nach IEC 60730
EMC Directive 2014/30/EU EN 61000-6-1, EN 61000-6-3
EN 61000-6-4 Directive 2006/95/EG Machine directive (EN 1050)

- Description of operation

17712 33:

When voltage is applied to the cable, the control unit to be activated is moved to any desired position by means of the carrier stem.

Direction of rotation for 3-point control (viewing the spindle of the ball valve from the actuator):

- The stem turns in the anti-clockwise direction, with the voltage on the brown cable, and the through passage of the ball valve is opened.
- The stem turns in the clockwise direction, with the voltage on the black cable, and the through passage of the ball valve is closed.
With 3-point control, the direction of rotation is changed by swapping the connections.
Direction of rotation for 2-point control (viewing the spindle of the ball valve from the actuator):
There is always voltage on the black cable.
- The stem turns in the anti-clockwise direction, with the voltage on the brown cable, and the ball valve is opened.
- The stem turns in the clockwise direction, with no voltage on the brown cable, and the ball valve is closed.
In the end positions (limit stop in actuator), or in the case of an overload, the magnetic coupling is activated. The positioning signal is switched off by the electronic cut-out after 3 minutes. The manual adjustment is performed by releasing the gear unit (slide switch beside the connection cable) and simultaneously turning it with the lever. The actuator position can be determined by looking at the lever or the indicator knob on the top part of the actuator.

17712 35:

Depending on the type of connection (see connection diagram), the actuator can be used as a continuous $0 . .10 \mathrm{~V}, 2$-point (OPEN/CLOSE) or 3-point actuator with an intermediate position (OPEN/STOP/CLOSE). The running time of the actuator can be set with the coding switch according to requirements. The coding switch can be used to select the equal-percentage, linear or quadratic characteristic. The HERZ rotary actuator 1771235 is combined with ball valves that have an equal-percentage basic characteristic. The manual adjustment is performed by releasing the gear unit (slide switch beside the connection cable) and simultaneously turning it with the lever. The actuator position can be determined by looking at the lever or the indicator knob on the top part of the actuator.

Note: After manually adjusting the slide switch, put it back into its original position (engage gear unit).

Additional technical data

The upper section of the housing with the cover, indicator knob and cover knob contains the stepping motor and the SUT electronics. The lower section of the housing contains the maintenance-free gear unit.

(n) Connection diagram

17712 35:
Connection as 2-point actuator
This OPEN/CLOSE activation can be performed via 2 cables. The actuator is connected to the voltage via the blue and brown cables. The control passage of the ball valve is opened by connecting the voltage to the black cable. After this voltage is switched off, the actuator moves to the opposite end position and closes the ball valve.

The unused red and grey wires must not be connected or come into contact with other cables. We recommend that you insulate these.

Connection as 3-point control unit
When voltage is applied to the cable (brown or black), the ball valve is moved to any desired position.
Direction of rotation (viewing the spindle of the ball valve from the actuator):

- The stem turns in the clockwise direction, with voltage on the brown cable, and closes the ball valve.
- The stem turns in the anti-clockwise direction, with the voltage on the black cable.

In the end positions (limit stop in actuator, max. angle of rotation of 95° reached) or in the case of an overload, the electronic motor cut-off is activated (no limit switches). Direction of rotation changed by transposing the connections.
The unused red and grey wires must not be connected or come into contact with other cables. We recommend that you insulate these.

Connection for control voltage $0 . . .10 \mathrm{~V}$
The built-in positioner controls the actuator depending on controller's output signal y. Direction of rotation (viewing the spindle of the ball valve from the actuator):
Direction of operation 1 (mains power supply on brown cable):
When the positioning signal is increasing, the carrier stem turns in the anti-clockwise direction and opens the control passage of the ball valve.
Direction of operation 2 (mains power supply on black cable):
When the positioning signal is increasing, the carrier stem turns in the clockwise direction and closes the control passage of the ball valve.

The starting point and control span are fixed. Only the brown cable or the black cable may be connected to the voltage. The cable not used must be insulated (if not connected via switch).
After a manual adjustment or a power failure of more than at least 5 min , the actuator automatically readjusts itself, always with a running time of 60 s .
After the power supply is connected, the stepping motor moves to the 100% position, makes the connection with the carrier stem, and then moves to the 0% position and thus defines the working range. After this, every position between a 0 and 90° angle of rotation can be achieved, depending on the control voltage. Thanks to the electronics, no steps can be lost, and the actuator does not require periodic re-adjustment. It is possible to operate multiple actuators of the same type in parallel. The feedback signal y0 $=0 \ldots 10 \mathrm{~V}$ corresponds to the effective angle of rotation of $0 \ldots 90^{\circ}$.
When control signal $0 \ldots 10 \mathrm{~V}$ is interrupted and direction of operation 1 is connected, the ball valve is closed completely (0% position).
The coding switch can be used to select the characteristic of the ball valve. Characteristics can only be generated when the actuator is used as a continuous actuator. The running times can be selected with additional switch settings. These can be used regardless of whether the 2-point, 3-point or continuous function is selected

Connection diagram

- Coding switch for running time and characteristic selection

switch position	$\operatorname{lo} \frac{\stackrel{\circ}{5}}{\frac{2}{7}}$		M	running time/angle of rotation $\mathrm{s} / 90^{\circ}$
				$120 \mathrm{~s} \pm 4$

				$120 \mathrm{~s} \pm 4$
				$120 \mathrm{~s} \pm 4$
				$60 \mathrm{~s} \pm 2$
				$60 \mathrm{~s} \pm 2$
				$60 \mathrm{~s} \pm 2$
				$35 \mathrm{~s} \pm 1$
				$35 \mathrm{~s} \pm 1$

© Notes on engineering and installation

Condensate, dripping water, etc. must be prevented from entering the actuator along the carrier stem. When connecting the electricity supply, ensure that the cross-section of the power cable is adapted to the power output and the length. However, we recommend a minimum cross-section of $0.75 \mathrm{~mm}^{2}$. The actuator/ball valve is mounted by inserting and turning the bayonet ring until the limit stop without any additional adjustment. No tools are required. The coupling of the spindle of the ball valve with the carrier stem is performed automatically, either by moving the manual adjuster to an angle of rotation of 100% or connecting the voltage. For dismantling, the bayonet ring is simply opened and the actuator removed. The device is delivered ex works in the middle position.
The concept of stepping motor and electronics enables parallel operation of multiple actuators of the same SUT type.
The coding switches are accessible via an opening with a black cover in the housing lid.
Note The housing must not be opened.

HERZ Valve actuator with SUT postioner

- Dimensions in mm

Model	a	b	c
1771232	58	289	38
1771221	78	382	60

Models

1771232 Valve actuator
Actuating power 2500 N, Voltage AC/DC 24 V, Control: 2-/3-point, constant For flow control valves (for more details, please refer to selection matrix)
$1771221 \quad$ Valve actuator
Actuating power 2500 N, Voltage AC/DC 24 V, Control: 2-/3-point, constant
For 2 and 3 way valves (for more details, please refer to selection matrix)

© Features

- For controllers with constant output ($0 \ldots .10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$) or switching output (2-point or 3-point control)
- -Stepping motor with SUT electronic control unit and electronic, force-dependent cut-off
- Simple assembly with valve; spindle is automatically connected after control voltage is applied
- Automatic detection of applied control signal (constant or switched); indicated by two LEDs
- Coding switches for selecting characteristic and running time
- Type of characteristic (linear/quadratic/equal-percentage) can be set on the actuator
- Automatic adaptation to the stroke of the valve (min. valve stroke 8 mm , max. valve stroke 49 mm). The measured stroke is saved and is not lost even in the event of a power failure
- Direction of operation can be selected via screw terminals when making the electrical connection
- Crank handle for external manual adjustment with motor cut-off and as trigger for a re-initialisation
- Power supply 230 V with module or direct connection for $24 \mathrm{~V} \sim / 24 \mathrm{~V}=$; continuous activation also admissible with 230 V
- Maintenance-free gear unit made of sintered steel; gearbox base-plate made of steel
- Mounting column made of stainless steel; mounting bracket made of cast light alloy for fitting the valve
- Electrical connections (max. $2.5 \mathrm{~mm}^{2}$) with screw terminals
- Three break-out cable inlets for M20 $\times 1.5(2 \times)$ and M16 $\times 1.5$
- Fitting vertically upright to horizontal, not suspended

Q Technical data

General

Power Supply
Supply voltage $24 \mathrm{~V} \sim \quad \pm 20 \%, 50 \ldots 60 \mathrm{~Hz}$
Supply voltage $24 \mathrm{~V}=$
Supply voltage 230 V~
Power consumption

Construction
Weight
Housing
Housing material
Parameters
Running time
Actuating power
Actuator stroke
Response time for 3-point
Positioner
Control signal 1
Control signal 2
Positioning feedback signal
Starting point U0
Control span ΔU
Switching range Xsh
Ambient conditions
Adm. ambient temperature
Adm. ambient humidity
Temperature of medium
$4,1 \mathrm{~kg}$
Two part, red
Flame-retardant plastic

2/4/6 s/mm
2500 N
$0 . .49 \mathrm{~mm}$
200 ms
$0 . .10 \mathrm{~V}, \mathrm{Ri}>100 \mathrm{k} \Omega$
$4 . . .20 \mathrm{~mA}, \mathrm{Ri}=50 \Omega$
$0 \ldots 10 \mathrm{~V}$, load $>2,5 \mathrm{k} \Omega$
0 bzw. 10 V
10 V
300 mV
$-10 . . .55^{\circ} \mathrm{C}$
< 95 \% rF no condensation
Max. $130{ }^{\circ} \mathrm{C}$

Standards, directives
Type of protection
Protection class
IP 66 (EN60529)
III (IEC 60730)
EMC-Directive
Low-voltage directive
Over-voltage category
EN 61000-6-2, EN 61000-6-4 2004/108/EG2)
EN 60730-1, EN 60730-2-14 2006/95/EG
III
Verschmutzungsgrad
III

Description of operation

Depending on the type of connection (see connection diagram), the actuator can be used as a continuous ($0 \ldots 10 \mathrm{~V}$ and/or $4 \ldots 20 \mathrm{~mA}$), 2-point (OPEN/CLOSE) or 3-point actuator (OPEN/STOP/CLOSE).

The running time of the actuator can be set with switches S 1 and S2 according to the relevant requirements.
Switches S3 and S4 are used to configure the characteristic (equal-percentage, linear or quadratic).

The external crank handle enables manual positional setting. When the crank handle is folded out, the motor is switched off. After the crank handle is folded back, the target position is approached again (without initialisation). When the crank handle is folded out, the actuator remains in this position.

© Connection diagram (24 V)

Connection as 2-point valve actuator (24 V)

This activation (OPEN/CLOSE) can be performed via two wires. The voltage is applied to terminals 1 and 2 a . When voltage $(24 \mathrm{~V})$ is applied to terminal 2 b , the actuator spindle moves out. After this voltage is switched off, the actuator moves to the opposite end position. In the end positions (valve limit stop or maximum stroke reached) or in the case of an overload, the electronic motor cut-off is activated (no limit switches).
The running times can be set using the coding switch. The characteristic cannot be selected here (the result is the characteristic of the valve). Terminals $3 i, 3 u$ and 44 must not be connected.

Connection as 3-point valve actuator (24 V)

If voltage is applied to terminal 2 a (or 2 b), the valve can be moved to any desired position. If voltage is applied to terminals 1 and 2 b , the actuator spindle moves out. It moves in when the electrical circuit is closed via terminals 1 and 2 a .

In the end positions (valve limit stop or maximum stroke reached) or in the case of an overload, the electronic motor cut-off is activated (no limit switches). The direction of the stroke can be changed by swapping the connections.

The running times are set using the coding switch. The characteristic cannot be selected here (the result is the characteristic of the valve). Terminals $3 i, 3 u$ and 44 must not be connected.

Connection with 230 V or 100... 110 V as 2-point/3-point or with continuous activation of valve actuator (accessory 17712 22)

The built-in positioner controls the actuator depending on controller's output signal y.
A voltage signal ($0 \ldots 10 \mathrm{~V}-$) at terminal 3 u or a current signal at terminal 3 i serves as the control signal. If there is a control signal at the two terminals $(3 u(0 \ldots 10 \mathrm{~V})$ and $3 \mathrm{i}(4 \ldots 20 \mathrm{~mA})$) at the same time, the input with the higher value has priority.

Direction of operation 1 (mains power supply on internal connection 2a):
When the positioning signal is increasing, the actuator spindle moves out.
Direction of operation 2 (mains power supply on internal connection 2 b):
When the positioning signal is increasing, the actuator spindle moves in.

The starting point and control span are fixed. To set partial ranges, a split-range unit is available as an accessory (only for voltage input 3u) - see the split-range unit function - which is intended to be installed in the actuator.

After the connection of the power supply and the initialisation, the actuator moves to every valve stroke between 0% and 100%, depending on the control signal. Thanks to the electronics and the travel measurement system, no stroke is lost, and the actuator does not require periodic re-initialisation.

When the end positions are reached, this position is checked, corrected if necessary, and saved again. It is thus possible to operate multiple actuators of the SUT type in parallel. The feedback signal y0 $=0 \ldots 10 \mathrm{~V}$ corresponds to the effective stroke of 0 to 100%.

If the control signal $0 \ldots 10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$ is interrupted with direction of operation 1 , the actuator spindle moves in completely, or moves out completely with direction of operation 2.

The coding switch can be used to set the characteristic of the valve. An equal-percentage or quadratic characteristic can only be generated when the actuator is used as a continuous actuator. Additional switches can be used to select the running times (with the 2-point, 3-point or continuous functions).

Continuous actuation can also be used with a power supply of 230 V or 110 V (accessory required). You must ensure that the neutral wire of the controller is connected to the control voltage. The neutral wire of the power supply may only be used for the module.

© Connection with 230 V (with plug-in module 17712 22)

Initialisation and feedback signal

The actuator initialises itself autonomously when it is connected as a continuous actuator. Once a voltage is applied to the actuator for the first time, the actuator moves to the lower limit stop of the valve and thus enables automatic connection with the valve spindle. Then it moves to the upper stop and the value is detected and saved via a travel measurement system. The control signal and the feedback are adjusted to this effective stroke. In case of a power failure or the removal of the power supply, no re-initialisation is carried out. The values remain saved.
For a re-initialisation, the actuator must be connected to the power supply and there must be a constant input signal at $3 u$ or $3 i$. An initialisation is triggered by folding the crank handle out and back twice within 4 s . Then the two LEDs flash red.
During initialisation, the feedback signal is inactive or equal to the value " 0 ". Initialisation is carried out with the shortest running time. The re-initialisation is only valid when the whole process is complete. Folding the crank handle out again interrupts this process.
If the actuator detects jamming, it reports this by setting the feedback signal to 0 V after approx. 90 s . During this time, the actuator tries to overcome the jamming. If the jamming can be overcome, the normal control function is activated again, and the feedback signal is restored. With 2-point or 3-point control, no initialisation is performed. The feedback signal is inactive.

L LED indicator: The indicator consists of bi-colour LEDs (red / green).

Both LEDs flash red	Initialisation
Top LED lights up red	Top limit stop or "CLOSED" position reached
Bottom LED lights up red	Bottom limit stop or "OPEN" position reached
Top LED flashes green	Actuator is running, moving to "CLOSED" position
Top LED lights up green	Actuator is stopped, last direction of travel "CLOSED"
Bottom LED flashes green	Actuator is running, moving to "OPEN" position
Bottom LED lights up green	Actuator is stopped, last direction of travel "OPEN"

No LED lights up	No power supply (terminal 2a or 2b)
Both LEDs flash red and green	Actuator is in manual mode

- Additional technical information

The red housing, consisting of the front part, rear part and connecting lid, only serves as a cover.
The DC motor, electronic control unit, load-bearing section and maintenance-free gear unit are located in the housing. The actuator spindle and the column are made of rust-proof material. The inner printed circuit boards and the gear unit are made of steel. The valve spindle guide and the valve neck coupling are made of die-cast aluminium.
Note on ambient temperatures: With a media temperature of up to $110^{\circ} \mathrm{C}$ in the valve, the ambient temperature is allowed to reach $60^{\circ} \mathrm{C}$.

- Engineering and fitting notes

Condensate, dripping water, etc. must be prevented from entering the actuator along the valve spindle.
The valve is mounted directly on the actuator and fixed with screws (no further adjustments are required). The actuator is connected with the valve spindle automatically. As delivered ex works, the actuator spindle is in the middle position. The housing contains three break-out cable inlets which are broken out automatically when the cable inlet is screwed in. The concept of stepping motor/electronics enables parallel operation of multiple valve actuators of the same type. The cross-section of the power cable must be selected based on the cable length and the number of actuators. With five actuators wired in parallel and a cable length of 50 m , we recommend a cable cross-section of 1.5 mm 2 (power consumption of the actuator $\times 5$).

Warning

If there is a high media temperature in the valve, the actuator columns and the spindle can attain similarly high temperatures. If damage can occur due to the failure of the control unit, additional protective measures must be implemented.

- Coding switch for running time and characteristic selection

Run time per mm	Switch coding	Run time for 14 mm stroke	Run time for 20 mm stroke	Run time for 40 mm stroke
2s		$28 \mathrm{~s} \pm 1$	$40 \mathrm{~s} \pm 1$	$80 \mathrm{~s} \pm 4$
4 s		$56 \mathrm{~s} \pm 2$	$80 \mathrm{~s} \pm 4$	$160 \mathrm{~s} \pm 4$
6s		$84 s \pm 4$	$120 \mathrm{~s} \pm 4$	$240 s \pm 8$
Nactory setting				

Desired character. curve	Switch coding	Characteristic curve for valve	Characteristic curve for drive	Effective on valve
$\begin{aligned} & \frac{0}{\tilde{T}} \\ & \frac{\pi}{0} \\ & \frac{\pi}{2} \\ & 0 \end{aligned}$				
$\mathrm{h}^{\infty}=\text { factory setting }$				

® Accessory

1771222
$230 \mathrm{~V} \pm 15 \%$, Supply voltage Plug-in modules for 2-/3-point and constant control, additional power 2 VA

HERZ Damper actuator with/without SUT

Dimensions in mm

Models

1771225 Damper actuator
Torque 10 Nm, Supply voltage AC 230 V, Control: 2-/3-point for HERZ 3 way valve 12137 XX

1771227 Damper actuator with SUT
Torque 10 Nm, Supply voltage AC/DC 24 V, Control: 2-/3-point, constant for HERZ 3 way valve 12137 XX

© Features

- For controllers with switching (2- and 3-point) or continuous output (0... $10 \mathrm{~V}, 1771227$ only)
- Self-centring spindle adapter
- Gear unit can be disengaged to position the damper and for manual adjustment
- Stepping motor with electronic activation and cut-out
- Maintenance-free
- Intelligent adaptation of angle of rotation, incl. feedback adjustment (1 771227 only)
- Suitable for all fitting positions
(0) Technical data

General
Construction

Weight
Housing
Housing material
Power cable
$0,7 \mathrm{~kg}$
Lower section black, upper section red
Fire-retardant plastic
$1,2 \mathrm{~m}, 3 \times 0,75 \mathrm{~mm}^{2}\left(17712\right.$ 25) $1,2 \mathrm{~m}, 5 \times 0,5 \mathrm{~mm}^{2}(17712$ 27)

Parameters

Angle of rotation
Admissible damper shaft
Adm.. damper shaft (hardness)
Operating noise
Response time

17712 25:
Ambient conditions
Adm. ambient temperature
Adm. ambient humidity
Control
Supply voltage

Type of protection
Protection class 230 V

CE conformity according to

Over-voltage category
Degree of contamination
$-20 . . .65{ }^{\circ} \mathrm{C}$
$5 . .85 \% \mathrm{rF}$ no condensation
2-/3-point
AC 230 V

IP 54 according to EN 60529
II according to IEC 60730

EMC-Richtlinie 2004/108/EG EN 61000-6-1, EN 61000-6-2 EN 61000-6-3, EN 61000-6-4 Directive 2006/95/EG EN 1050 Lowvoltage directive EN 60730-1, EN 60730-2-14
III,
II

1) Operating time approx. 80% up to $65^{\circ} \mathrm{C}, 100 \%$ up to $55^{\circ} \mathrm{C}$

17712 27:

Power supply
Supply voltage $24 \mathrm{~V} \sim$
Supply voltage $24 \mathrm{~V}=$
$\pm 20 \%, 51 \ldots 60 \mathrm{~Hz}$
$\pm 20 \%$

Postioner
Control signal y $0 . . .10 \mathrm{~V}, \mathrm{Ri}>100 \mathrm{k} \Omega$
Positional feedback $0 . .10 \mathrm{~V}$, load $>10 \mathrm{k} \Omega$
Starting point U0
0 V or 10 V
Control span ΔU
10 V
Switching range Xsh
200 mV

Ambient conditions
Adm. Ambient temperature
Adm. ambient humidity
$-20 . .55^{\circ} \mathrm{C}$
< $95 \% \mathrm{rF}$ no condensation

Type of protection
Protection class
CE conformity according to

IP54 according to EN 60529
III according to IEC 60730
EMV-directive 2004/108/EU EN 61000-6-1, EN 61000-6-3
EN 61000-6-4 Directive 2006/95/EG Machine directive (EN 1050)

Description of operation

17712 25:

When voltage is applied to the cable, the control unit to be activated is moved to any desired position.
Direction of rotation for 3-point control (viewing the spindle adaptor from the actuator):

- The spindle adaptor turns in the clockwise direction, with the voltage on the brown cable.
- The spindle adaptor turns in the anti-clockwise direction, with the voltage on the black cable.

Direction of rotation for 2-point control (viewing the spindle adaptor from the actuator):
There is always voltage on the black cable.

- The spindle adaptor turns in the clockwise direction, with the voltage on the brown cable.
- The spindle adaptor turns in the anti-clockwise direction, with no voltage on the brown cable.

In the end positions (limit stop in air damper or maximum angle of rotation reached), or in the case of an overload, the magnetic coupling is activated. The positioning signal is switched off by the electronic cutout after 3 minutes. The effective end position results from the limit stop of the damper or the angle-ofrotation limit, or by reaching the maximum angle of rotation of 95°. The manual adjustment is performed by releasing the gear unit using the adjuster beside the connection cable and simultaneously adjusting the spindle adaptor. With 3-point control, the direction of rotation is changed by swapping the connections.

17712 27:

Depending on the type of connection (see connection diagram), the actuator can be used as a continuous $0 . .10 \mathrm{~V}$, 2-point (OPEN/CLOSE) or 3-point actuator (OPEN/STOP/CLOSE) with an intermediate position. The running time of the actuator can be set with switches S1 and S2 according to requirements.
The manual adjustment is performed by releasing the gear unit using the adjuster beside the connection cable and simultaneously adjusting the spindle adaptor.

Additional technical data

17712 25:
The upper section of the housing with the cover and indicator knob contains the synchronous motor with capacitor. The lower section of the housing contains the maintenance-free gear unit and the gear-release knob. To reverse the direction of rotation for 3-point control, the brown and black cables must be swapped. The actuators are protected against incorrect connection.

17712 27:

The upper section of the housing with the cover, indicator knob and cover knob contains the stepping motor and the SUT electronics. The lower section of the housing contains the maintenance-free gear unit, the gear-release lever and the spindle adaptor.

Connection diagram 1771225

Connection diagram 1771227

Connection as 2-point control unit
This OPEN/CLOSE activation can be performed via 2 cables. The actuator is connected to the voltage via the blue and brown cables. The damper actuator is moved to the end position by connecting the voltage to the black cable (clockwise direction to 100% angle of rotation). After the voltage is switched off, the actuator moves to the opposite end position. The unused red and grey wires must not be connected or come into contact with other cables. We recommend that you insulate these.

Connection as 3-point control unit
When voltage is applied to the cable (brown or black), the damper actuator can be moved to any desired position. Direction of rotation (viewing the spindle adaptor from the actuator):

- The spindle adaptor turns in the clockwise direction, with the voltage on the black cable.
- The spindle adaptor turns in the anti-clockwise direction, with voltage on the brown cable.

In the end positions (limit stop of damper, limit stop due to angle-of-rotation limit, max. angle of rotation of 95° reached) or in the case of an overload, the electronic motor cut-off is activated (no limit switches). Direction of rotation changed by transposing the connections.
The unused red and grey wires must not be connected or come into contact with other cables. We recommend that you insulate these.

Connection for control voltage $0 . . .10 \mathrm{~V}$

The built-in positioner controls the actuator depending on controller's output signal y.
Direction of rotation (viewing the spindle adaptor from the actuator):
Direction of operation 1 (mains power supply on brown cable):
When the positioning signal is increasing, the spindle adaptor turns in the clockwise direction
Direction of operation 2 (mains power supply on black cable):
When the positioning signal is increasing, the spindle adaptor turns in the anti-clockwise direction The starting point and the control span are fixed. Depending on the direction of operation, only the brown cable or the black cable may be connected. The other cable must be insulated.
When the voltage is connected, the stepping motor moves to the two end stops one after the other, and determines its effective angle of rotation. Thanks to the electronics, no steps can be lost, and the actuator does not require periodic re-adjustment. In the case of a power failure longer than at least 5 min, or directly after manual adjustment, the actuator automatically readjusts itself. When the angle of rotation is changed, the manual adjuster must be used to trigger a new adjustment so that the actuator, the control voltage $0 \ldots 10 \mathrm{~V}$ and the feedback signal adjust to the new angle of rotation. Switch S3 can be used to switch off the automatic initialisation. The positioning motor now works in the manual or controlled initialisation mode and must be manually moved to the end stops by the controller output signal, or it is automatically moved to the end stops by the control behaviour in the control loop. If it detects a new limit stop, this is saved and the feedback signal is adjusted accordingly. Then the current position is calculated and output. When control signal $0 \ldots 10 \mathrm{~V}$ is interrupted and direction of operation 1 is connected, the damper is closed completely (0\% position).

- Coding switch 1771227

1771227	S1	S2	S3
120s	OFF	ON	-
120s	ON	ON	-
60s	ON	OFF	-
60s	OFF	OFF	-
Initialisation on	-	-	ON
Initialisation off	-	-	OFF
Factory setting position	ON	ON	ON

Engineering and fitting notes

The concept of the synchronous motor enables the electric parallel operation of multiple damper actuators. The actuator can be installed in any position (including a hanging position). It is plugged directly onto the damper spindle and clipped to the anti-torsion device. The self-centring spindle adapter protects the damper spindle. The damper actuator can be detached from the damper spindle very easily without removing the anti-torsion device.
The angle of rotation can be limited to between 0° and 90° and continuously adjusted between 5° and 80°. The limit is fixed using a set screw directly on the actuator and the limit stop on the self-centring spindle adapter. The spindle adapter is suitable for $\varnothing 8 \ldots 16 \mathrm{~mm}$ and $\square 6.5 \ldots 12.7 \mathrm{~mm}$ damper spindles.

HERZ Valve actuator

Dimensions in mm

Models

1771230 Valve actuator
Actuating power 1000 N, Voltage AC 230 V, Control: 2-/3-point
Actuating time: 6(12) s/mm; Stroke: 20 mm ; Power consumption: $<2,4 \mathrm{~W},<4,0 \mathrm{VA}$

1771231 Valve actuator
Actuating power 1000 N, Voltage AC/DC 24 V, Control: 2-/3-point, constant Actuating time: 6(4) s/mm; Stroke: 20 mm ; Power consumption: < 1,7 W, < 3,5 VA

Features

- Crank handle for external manual adjustment with motor cut-off
- Low operating noise
- Simple assembly with valve; spindle is automatically connected after nominal voltage is applied
- Electrical parallel operation of five actuators
- Three-piece housing made of flame-retardant red/black plastic and seals with type of protection IP54
- Maintenance-free gear unit made of plastic, threaded spindle and gearbox base-plates made of steel
- Patented drive-valve coupling
- Mounting column of Aluminium
- Mounting bracket made of light metal casting for valve mounting with 20 mm stroke and made of plastic for valve mounting with 8 mm stroke
- Electrical connections (max. $1.5 \mathrm{~mm}^{2}$) with screw terminals
- Two break-out cable inlets for metric cable gland made of plastic M20 $\times 1.5$
- Fitting position vertically upright to horizontal, not suspended
- Actuating power 1000 N (Actuating power 1000 N under nominal conditions (24 V or $230 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient temperature, 50 Hz). With boundary conditions (19.2 V~/28.8 V~/21.6 V=/28.8 V=, $-10^{\circ} \mathrm{C} / 55^{\circ} \mathrm{C}, 60 \mathrm{~Hz}$) and positioning time, the actuating/tensile force is minimised to 800 N)

Only 17712 30:

- For controllers with a switching output (2-point or 3-point control)
- Synchronous motor with electronic control unit and load-dependent cut-off
- Direction of operation and positioning time can be set using coding switches

Only 17712 31:

- For controllers with constant output ($0 . . .10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}$) or switching output (2-point or 3-point control)
- BLDC motor (brushless DC) with SUT electronic control unit of the third generation and electronic load-dependent cut-off
- Automatic detection of applied control signal (continuous or switching), operating display with bicolour LED
- Automatic adaptation to the stroke of the valve, between 8 and 20 mm
- With the built-in absolute distance measurement system, the position is always maintained in the case of power failure
- The direction of operation, characteristic (linear/equal percentage), positioning time and control signal (voltage/current) can be adjusted via coding switches
- Integrated forced operation can be set via coding switches (with selectable direction of operation)
- Easy re-initialisation using a coding switch
- Parameterisation option via the BUS interface

(0) Technical data

Supply voltage $24 \mathrm{~V} \sim$
Supply voltage $24 \mathrm{~V}=$
Supply voltage 230 V~
Actuating power
Operating noise
Response time
Temperature of medium
Weight
Operating temperature ambient
Storage and transport temp.
Humidity (no condensation)
Type of protection
Protection class
$\pm 20 \%, 50 . .60 \mathrm{~Hz}$
$\pm 10 . . .20 \%$
$\pm 15 \%$
1000 N
$<30 \mathrm{~dB}(\mathrm{~A})$ at maximum nominal force
200 ms
$0 . .100^{\circ} \mathrm{C}$ max.
$1,6 \mathrm{~kg}$
$-10 . .55^{\circ} \mathrm{C}$
$-40 . . .80^{\circ} \mathrm{C}$
5...85\% rF

IP 66 (EN 60529)
7712 30: II u. III (IEC 60730)
7712 31: III (EN 60730-1), EN 60730-2-14

CE conformity according to
Low-voltage directive
Over-voltage category
Degree of contamination
Max. altitude
Machine directive

17712 31:

Control signal y

Posit. feedback signal y0
Starting point U0
Starting point 10
Control span ΔU
Control span ΔI
Hysteresis Xsh

EMV-Richtlinie 2004/108/EG EN 610000-6-1, EN 610000-6-2, EN 610000-6-3, EN 610000-6-4
EN 60730-1, EN 60730-2-14 (für 230 V Modell) 2006/95/EG
III
II
2000 m
EN ISO 12100 2006/42/EG (according to appendix IIB)
$0 . . .10 \mathrm{~V}, \mathrm{Ri} \geq 50 \mathrm{k} \Omega 4 \ldots 20 \mathrm{~mA}, \mathrm{Ri} \leq 50 \Omega$
$0 . . .10 \mathrm{~V}$, load $\geq 5 \mathrm{k} \Omega$
0 or 10 V
4 or 20 mA
10 V
16 mA
160 mV
0,22 mA

- Description of operation

17712 30:

The actuator can be used as a 2-point (OPEN/CLOSE) or 3-point actuator (OPEN/STOP/CLOSE).
The running time of the actuator can be set with the S1 switches according to the respective requirements. Using switch S2, the direction of operation can be changed. In the end positions (valve limit stop or when the maximum stroke is reached) or upon overload, the electronic motor cut-off (no limit switch) responds and turns off the motor. The external crank handle enables manual positional setting. After the crank handle is folded back, the actuator can be started again normally. When the crank handle is folded out, the actuator remains in this position.

17712 31:

Depending on the type of connection (see connection diagram), the actuator can be used as a continuous ($0 \ldots . .10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$), 2-point (OPEN/CLOSE) or a 3-point actuator (OPEN/STOP/CLOSE).
The positioning time of the actuator can be set with the S1 switches according to the respective requirements. Using switch S2, the direction of operation can be changed. In the end positions (valve limit stop or when the maximum stroke is reached) or upon overload, the electronic motor cut-off (no limit switch) responds and turns off the motor. The external crank handle enables manual positional setting. After the crank handle is folded back, the actuator moves to the target position again (without initialisation). When the crank handle is folded out, the actuator remains in this position.

- Different types of connections

17712 30:

Connection as 2-point actuator (24 V or 230 V)
The OPEN/CLOSE activation is via two wires.
The actuator is connected to a permanent voltage via the terminals MM or N and terminal 01.
When voltage is applied to terminal 02, the actuator spindle retracts to the end position. After the voltage is switched off at terminal 02, the actuator spindle extends to the opposite end position.

Connection as 3-point actuator (24 V or 230 V)
If voltage is applied to the terminals MM or N and 01 (or 02), the valve can be moved to any desired position. If voltage is applied to terminal MM or N and 01 , the actuator spindle extends. If the electrical circuit is closed via terminal MM or N and 02 , the actuator spindle retracts. If there is no voltage on terminals 01 and 02 , the actuator remains in the respective position until voltage is applied.

17712 31:

Connection as 2-point valve actuator (24 V)
The OPEN/CLOSE activation is via two wires. The actuator is connected to a permanent voltage via terminal MM and terminal 01 . When voltage $(24 \mathrm{~V})$ is applied to terminal 02 , the actuator spindle extends into the end position. After the voltage is switched off at terminal 02 , the actuator automatically retracts into the base position. Terminal 03 may not be connected or touch other contacts. We recommend that you insulate these.

Connection as 3-point valve actuator (24 V)
If voltage is applied to terminals MM and 01 (or 02), the valve can be moved to any position. If voltage is applied to terminals MM and 01, the actuator spindle retracts. If the electrical circuit is closed on terminal MM and 02 , the actuator spindle extends. If there is no voltage on terminals 01 and 02 , the actuator remains in the respective position until voltage is applied. Terminal 03 may not be connected or touch other contacts. We recommend that you insulate these.

Connection to a control voltage ($0 . . .10 \mathrm{~V}$ or $4 . . .20 \mathrm{~mA}$)
The built-in positioner controls the actuator depending on controller's output signal y. A voltage signal $(0 \ldots 10 \mathrm{~V})$ at terminal 03 serves as the control signal. Coding switch S 4 can be used to switch to a current input ($4 \ldots . .20 \mathrm{~mA}$). If there is voltage on terminals MM/01 and a rising positioning signal, the actuator spindle extends. The direction of operation can be reversed with coding switch S2. The starting point and control span are fixed. After the connection of the power supply and the initialization, the actuator moves to every valve stroke between 0% and 100%, depending on the control signal. Thanks to the electronics and the absolute distance measurement system, no stroke is lost, and the actuator does not require periodic reinitialisation. If the control signal $0 \ldots 10 \mathrm{~V}$ is interrupted in the direction of operation 1 , the actuator spindle retracts completely. If the control signal $0 . . .10 \mathrm{~V}$ is interrupted in the direction of operation 2 , the actuator spindle extends completely. This is true if the forced operation is switched off. (Coding switch S5 OFF) With coding switch S3, the characteristic of the valve/actuator combination can be adjusted. An equalpercentage characteristic can only be generated when the actuator is used as a continuous actuator.

(0) Initialisation and feedback signal

The actuator initialises itself automatically when it is connected as a continuous actuator (not in 2-/3- point mode).
When a voltage is applied to the actuator for the first time, the actuator first moves to the first and then to the second valve limit stop, or to the internal actuator stop. The two values are recorded and stored by the absolute distance measurement system. The control signal and the feedback are adapted to this effective stroke. After initialisation, the actuator goes to every valve stroke between 0% and 100%, depending on the control voltage.
In case of a power failure or the removal of the power supply, no re-initialisation needs to be carried out. The values remain saved. If the initialisation is interrupted, the initialisation is started again when the voltage is re-applied. You trigger a re-initialisation by switching coding switch S8 from OFF to ON or vice versa. When the process is triggered, the LED flashes green.
During initialisation, the feedback signal is inactive or equal to the value " 0 ". The initialisation is carried out with the shortest positioning time. The re-initialisation is only valid when the whole process is complete.
If a stroke change is carried out, a re-initialisation must be triggered so that the new stroke can be adapted. If the valve actuator detects jamming, it reports this by setting the feedback signal to 0 V after approx. 90 s . During this time, the actuator continues to try to overcome the jamming. If the jamming can be overcome,
the normal control function is activated again and the feedback signal is restored. With 2-point or 3-point control without a feedback signal, no initialisation is performed.

- Connection diagram 1771230

■ Connection diagram 1771231

(0) Forced operation (in continuous mode 17712 31)

Forced operation is activated via coding switch S5. To use this function, an external on/off controller must be attached to terminal 6 . The on/off controller functions as normally-closed contacts.
If the on/off controller opens the electrical circuit, the actuator spindle moves to the end position defined by coding switch S6. Forced operation can be used only in continuous mode.

© Engineering and fitting notes

The concept of a brushless DC motor/electronics ensures electrical parallel operation of up to five actuators of the same type. The valve is mounted directly on the actuator and fixed with screws (no further adjustments are required). The actuator is connected with the valve spindle automatically. As delivered ex works, the actuator spindle is in the middle position. As delivered ex works, the actuator spindle is in the middle position. Condensate, dripping water, etc. must be prevented from entering the actuator along the valve spindle.
The housing contains two break-out cable inlets for two metric plastic cable glands $\mathrm{M} 20 \times 1.5$, which are broken out automatically when the cable inlet is screwed in. If the cable resistance is $>1.5 \Omega$, the ground should be separated from the power supply and the signal if possible. The cross-section of the power cable must be selected based on the cable length and the number of actuators. With five parallel actuators and a cable length of 50 m , a cable cross-section of 1.5 mm 2 and a line resistance of $>1.5 \Omega$ must be used (power consumption of the actuator $\times 5$). According to building installation regulations, the lines must be protected from overload or short circuit.

Note for UL and CSA applications:
In the United States, the installed lines and cross-sections which are to be connected by the customer must comply with the requirements of NFPA70 (NEC), and in Canada they must comply with the requirements of the standard C22.1-12 (CE Code).
Note:
The actuators are not suitable for use

- in potentially explosive environments,
- on ships or vehicles,
- in plants or machinery where functional safety is required.

Specific standards such as IEC/EN 61508, IEC/EN 61511, EN ISO13849 and the like have not been taken
into account.
Local requirements regarding installation, usage, access rights, accident prevention, safety, dismantling and disposal must be taken into account.
The housing must not be opened.

- Coding switch

1771230

1771231

凹 LED Indicator

LED	Description
Flashes green（T1s）	Valve adapting，initialisation
Flashes green（T3s）	Position reached
Lights up green	Actuating spindle moves IN／OUT
Flashes orange	Manual adjustement activated
Flashes red	Actuator jammed，actuator at end stop
Lights up red	Incorrect configuration of forced operation，undervoltage，insufficiently adapted stroke

® Accessory

Please，in order to choose a right adaptor to your valve，use the selection matrix．
1771217 Adapter set for 1771230 and 1771231 for 2 and 3 way valves
1771218 Adapter set for 1771230 and 1771231 for flow control valves

HERZ Valve actuator

Dimensions in mm

Models

1771228 Valve actuator
Actuating Power 500 N , Voltage AC 230 V , Control: 2-/3-point Running time: 7,5 s/mm, Power consumption: 3,2 W, 7 VA / 2 W, 5 VA

1771229 Valve actuator
Actuating Power 500 N , Voltage AC/DC 24 V , Control: 2-/3-point, constant, Running time: $7,5 \mathrm{~s} / \mathrm{mm} / 15 \mathrm{~s} / \mathrm{mm}$, Power consumption: 3,5 W, 6,6 VA / 2,7 W, 5,3 VA

© Features

- For controllers with a switching (2-/3-point) output
- Synchronous motor with electronic control unit and cut-off and force-dependent cut-off, 1771229 only)
- Automatic recognition of applied control signal (continuous or switched) (1 771229 only)
- Coding switches for selecting characteristic and running time (1 771229 only)
- Type of characteristic (linear/equal-percentage) can be set on the actuator (1 771229 only)
- \quad Automatic adaptation to valve stroke (17712 29 only)
- Direction of operation can be selected directly on the cable (1 771229 only)
- Maintenance-free gear unit
- Gear unit can be disengaged in order to position the valve by hand with the provided hexagon key (load-free)
- Connection with valve spindle performed semi-automatically after control voltage is applied
- Fitting vertically upright to horizontal, not suspended

Technical Data

Weight
Housing

1 kg
Lower section black, Upper section red
Housing material
Power cable
Actuator stroke
Response time
Adm. ambient temperature
Adm. ambient humidity
Temperature of medium
Type of protection
Protection class

17712 28:
Supply voltage
Power consumption
Control

CE conformity according to
EMV-directive 2014/30/EU

Low-Voltage Directive
Over-voltage category
Degree of contamination
Mach. directive 2006/42/EG

17712 29:

Power supply
Supply voltage
Supply voltage
Power consumption
Positioner
Control signal y
Positional feedback signal
Starting point U0
Control Span ΔU
Switching range Xsh

Flame-retardant plastic
$1,2 \mathrm{~m}, 3 \times 0,75 \mathrm{~mm}^{2}\left(17712\right.$ 28) $1,2 \mathrm{~m}, 5 \times 0,75 \mathrm{~mm}^{2}(17712$ 29)
$8 \ldots 20 \mathrm{~mm}$
200 ms
$-10 . .55^{\circ} \mathrm{C}$
$5 . .85 \% \mathrm{rF}$ no condensation
Max. $100^{\circ} \mathrm{C}$
IP54 (EN 60529), horizontal
17712 28: 230 V: II (EN 60730), 17712 29: III (IEC 60730)
$230 \mathrm{~V} \sim \pm 15 \%, 50 \ldots 60 \mathrm{~Hz}$
2 W; 5 VA
2-/3-point

EN 61000-6-1, EN 61000-6-2
EN 61000-6-3, EN 61000-6-4
EN 60730-1, EN 60730-2-14 2014/35/EU
III
II
EN ISO 12100 (according to appendix IIB)
$24 \mathrm{~V} \sim \pm 20 \%, 50 \ldots 60 \mathrm{~Hz}$
$24 \mathrm{~V}=-10 \% \ldots 20 \%$
3,5 W, 6,6 VA; 2,7 W, 5,3 VA
$0 . . .10 \mathrm{~V}, \mathrm{Ri}>100 \mathrm{k} \Omega$
$0 . .10 \mathrm{~V}$, load > $10 \mathrm{k} \Omega$
0 V or 10 V
10 V
200 mV

CE conformity according to
EMC-directive 2014/30/EU EN 61000-6-1, EN 61000-6-3, EN 61000-6-4

Description of operation

17712 28:

When voltage is applied to the cable, the control unit to be activated is moved to any desired position by means of the coupling rod.

Direction of the stroke for 3-point control:

- The coupling rod moves out and the valve opens when the actuator is connected to the voltage via the blue (MM/N) and brown (01) cables.
- The coupling rod moves in and the valve closes when the actuator is connected to the voltage via the blue (MM/N) and black (02) cables.
With 3-point control, the direction of the stroke is changed by swapping the connections.

Direction of the stroke for 2-point control (there is always voltage on the black cable 02):

- The coupling rod moves out and the valve opens when the actuator is connected to the voltage via the blue (MM/N) and brown (01) cables.
- The coupling rod moves in and the valve closes when the actuator is connected to the voltage via the blue (MM/N) cable, and the brown (01) cable is not connected to the voltage. In the end positions (limit stop in valve or maximum stroke reached) or in the case of an overload, the magnetic coupling is activated. The electronic cut-out switches off the positioning signal after approx. 3 minutes.
The manual adjustment is performed in the load-free state by releasing the gear unit (slide switch beside the connection cable) and simultaneously turning it with the hexagon key on the top part of the actuator. 20 mm stroke is achieved with 4 turns. The actuator position can be determined by looking at the actuator bracket or the indicator knob on the top part of the actuator.

17712 29:

This valve actuator is used to control valves and may only be used for this purpose.
Depending on the type of connection (see connection diagram), the actuator can be used as a continuous $0 . .10 \mathrm{~V}$, 2-point (OPEN/CLOSE) or 3-point actuator (OPEN/STOP/CLOSE) with an intermediate position. 2 running times are available for selection.
Switch S3 can be used to select the equal-percentage or linear characteristic. The 1771229 is combined with valves that have an equal-percentage basic characteristic. The 1771229 can be mounted on a valve with a linear characteristic, but the position of the coding switch must be considered.

The manual adjustment is performed in the load-free state by releasing the gear unit (slide switch beside the connection cable) and simultaneously turning it with the hex spanner on the top part of the actuator. 20 mm stroke is achieved with 4 turns.

Attention!

Damage to device!
After the manual adjustment, the slide switch must be put back into its original position. (Engage gear unit)

Q Description of operation

17712 28:
The upper section of the housing with the cover and indicator knob contains the synchronous motor with capacitor. The lower section of the housing contains the maintenance-free gear unit and the gear-release knob.

17712 29:

The upper section of the housing with the cover, indicator knob and cover knob contains the stepping motor and the SUT electronics. The lower section of the housing contains the maintenance-free gear unit.

(Connection diagram 1771228

() Connection diagram 1771229

Connection as 2-point actuator

This OPEN/CLOSE activation can be performed via 2 cables. The actuator is connected to the voltage via the blue and brown cables. The control passage of the valve is opened by connecting the voltage to the black cable. After this voltage is switched off, the actuator moves to the opposite end position and closes the valve.
The unused red and grey wires must not be connected or come into contact with other cables. We recommend that you insulate these.

Connection as 3-point control unit

When voltage is applied to the cable (brown or black), the valve is moved to any desired position. The coupling rod moves out and opens the valve when voltage is applied to the black cable. It moves in and closes the valve when the electrical circuit is closed via the blue and brown cables. In the end positions (limit stop in valve or maximum stroke reached) or in the case of an overload, the electronic motor cut-off is activated (no limit switches). Direction of the stroke changed by transposing the connections (BN/BK). The unused red and grey wires must not be connected or come into contact with other cables. We recommend that you insulate these.

Connection for control voltage $0 . . .10 \mathrm{~V}$

The built-in positioner controls the actuator depending on controller's output signal y .
Direction of operation 1 (mains power supply on brown cable):
When the positioning signal is increasing, the coupling rod moves out and opens the valve (control passage).

Direction of operation 2 (mains power supply on black cable):
When the positioning signal is increasing, the coupling rod moves in and closes the valve (control passage).
The starting point and control span are fixed.
After a manual adjustment or a power failure of more than at least 5 min, the actuator automatically readjusts itself.
After the power supply is connected, the stepping motor moves to the lower limit stop, makes the connection with the valve spindle, moves to the upper limit stop and thus defines the closing position.
After this, every stroke between 0 and 20 mm can be achieved, depending on the control voltage.

Thanks to the electronics, no steps can be lost, and the actuator does not require periodic re-adjustment. It is possible to operate multiple actuators of the same type in parallel. The feedback signal y0 $=0 . .10 \mathrm{~V}$ corresponds to the effective stroke.
When control signal $0 \ldots 10 \mathrm{~V}$ is interrupted and direction of operation 1 is connected, the valve is closed completely (0\% position).
The coding switch can be used to select the characteristic of the valve. Characteristics can only be generated when the actuator is used as a continuous actuator. The running times can be selected with additional switches. These can be used regardless of whether the 2-point, 3-point or continuous function is selected.

Laufzeit pro mm Temps de marche par mm Running time per mm	Schalterkodierung Codage de commutation Swith coding	Laufzeit für 8 mm Hub Temps de marche pour une course de 8 mm Running time for 8 mm of stroke	Laufzeit für 20 mm Hub Temps de marche pour une course de 20 mm Running time for 20 mm of stroke
7,5 s		$60 \mathrm{~s} \pm 2$	$150 \mathrm{~s} \pm 5$
15 s		$120 \mathrm{~s} \pm 4$	$300 \mathrm{~s} \pm 10$

- Connection diagram 1771229

Condensate, dripping water, etc. must be prevented from entering the actuator along the valve spindle. Hanging position (fitting upside down) is not admissible.
The coupling of the valve spindle with the actuator spindle is performed semi-automatically using the manual adjuster.
When dismantling, first the actuator and valve spindles are released, then unscrewed. The concept of synchronous motor and magnetic coupling enables parallel operation of multiple valve actuators of the same type.
The auxiliary contacts accessory is screwed onto the side of the device.
Caution!
When the housing is opened there is a risk of injury through electric shock.
Opening the housing can damage the device.

- Do not open the housing!

		$\begin{gathered} \hline 1771229 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \\ 500 \mathrm{~N}, \\ 20 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline 1771231 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \\ 1000 \mathrm{~N}, 20 \\ \mathrm{~mm} \\ \hline \end{gathered}$	1771232 24 V mod., $2-3$ Point $2500 \mathrm{~N}, 40$ mm	$\begin{gathered} \hline 1771221 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \\ 2500 \mathrm{~N}, 40 \\ \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} \hline 1771228 \\ 230 \mathrm{~V} 2,3 \\ \text { Point. } \\ 500 \mathrm{~N}, \\ 20 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1771230 \\ 230 \mathrm{~V} 2,3 \\ \text { Point. } \\ 1000 \mathrm{~N}, 20 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline 1771225 \\ 230 \vee 2,3 \\ \text { Point. } \end{gathered}$	$\begin{array}{\|c\|} \hline 1771227 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \end{array}$	$\begin{gathered} \hline 1771233 \\ 230 \vee 2,3 \\ \text { Point. } \end{gathered}$	$\begin{gathered} 1771235 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \end{gathered}$
Order number	DN										
F 400671	15	1771220				1771220					
F 400690		1771220				1771220					
F 400672		1771220				1771220					
F 400691		1771220				1771220					
F 400673		1771220				1771220					
F 400692		1771220				1771220					
F 400693		1771220				1771220					
F 400653		1771220				1771220					
F 400674		1771220				1771220					
F 400694		1771220				1771220					
F 400675		1771220				1771220					
F 400695	40	1771220				1771220					
F 400661		1771220				1771220					
F 400680		1771220				1771220					
F 400696	50	1771220				1771220					
F 400662		1771220				1771220					
F 400681			1771218				1771218				
F 400697	65		1771218				1771218				
F 400663		1771220				1771220					
F 400682			1771218				1771218				
F 400698	80		1771218				1771218				
F 400664			1771217				1771217				

		1771229 24 V mod., 2-3 Point 500 N , 20 mm	$\begin{gathered} 1771231 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \\ 1000 \mathrm{~N}, 20 \\ \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 1771232 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \\ 2500 \mathrm{~N}, 40 \\ \mathrm{~mm} \end{gathered}$	$\begin{array}{\|c} \hline 1771221 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \\ 2500 \mathrm{~N}, 40 \\ \mathrm{~mm} \\ \hline \end{array}$	$\begin{aligned} & 1771228 \\ & 230 \mathrm{~V} 2,3 \\ & \text { Point. } \\ & 500 \mathrm{~N}, \\ & 20 \mathrm{~mm} \end{aligned}$	$\begin{gathered} 1771230 \\ 230 \mathrm{~V} 2,3 \\ \text { Point. } \\ 1000 \mathrm{~N}, 20 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1771225 \\ 230 \vee 2,3 \\ \text { Point. } \end{gathered}$	$\begin{gathered} 1771227 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \end{gathered}$	$\begin{gathered} 1771233 \\ 230 \vee 2,3 \\ \text { Point. } \end{gathered}$	1771235 24 V mod., 2-3 Point
F 400683	100										
F 400699											
F 400665			1771217				1771217				
F 400684	125										
F 400610											
F 400666											
F 400656	125										
F4006 67	150										
F4006 57	150										
F4006 68	200										
F4006 69	250										
F 400685	150										
F 400611	150										
F 400639	15										
F 400640	15										
F 400641	15										
F 400642	20										
F 403501	15	1771220				1771220					
F 403540		1771220				1771220					
F 403511	15	1771220				1771220					
F 403551		1771220				1771220					
F 403521	15	1771220				1771220					
F 403561		1771220				1771220					

		1771229 24 V mod., 2-3 Point 500 N, 20 mm	$\begin{gathered} 1771231 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \\ 1000 \mathrm{~N}, 20 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1771232 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \\ 2500 \mathrm{~N}, 40 \\ \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 1771221 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \\ 2500 \mathrm{~N}, 40 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline 1771228 \\ 230 \mathrm{~V} 2,3 \\ \text { Point. } \\ 500 \mathrm{~N} \\ 20 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1771230 \\ 230 \mathrm{~V} 2,3 \\ \text { Point. } \\ 1000 \mathrm{~N}, 20 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1771225 \\ 230 \vee 2,3 \\ \text { Point. } \end{gathered}$	$\begin{gathered} 1771227 \\ 24 \mathrm{~V} \text { mod., } \\ 2-3 \text { Point } \end{gathered}$	$\begin{gathered} 1771233 \\ 230 \vee 2,3 \\ \text { Point. } \end{gathered}$	1771235 24 V mod., 2-3 Point
F 403531	15	1771220				1771220					
F 403571		1771220				1771220					
F 403503	25	1771220				1771220					
F 403543		1771220				1771220					
F 403513	25	1771220				1771220					
F 403553		1771220				1771220					
F 403504	32		1771217				1771217				
F 403544			1771217				1771217				
F 403505	40		1771217				1771217				
F 403545			1771217				1771217				
F 403516	50		1771217				1771217				
F 403556			1771217				1771217				
F 403507	65										
F 403547											
F 403508	80										
F 403548											
F 403509	100										
F 403549											
F 403510	125										
F 403550											
F 403541	150										
F 403552											
F 403701	15	1771220				1771220					
F 403711	15	1771220				1771220					
F 403721	15	1771220				1771220					

	$\left\|\begin{array}{c} \underset{N}{N} \\ \underset{\sim}{N} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{N}{N} \\ & \underset{N}{N} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \underset{N}{N} \\ & \underset{N}{N} \end{aligned}\right.$																				
				$\left\|\begin{array}{l} \stackrel{N}{N} \\ \underset{\sim}{N} \end{array}\right\|$	$\frac{\underset{N}{N}}{\underset{N}{N}}$	$\underset{\substack{N}}{\stackrel{N}{N}}$																	
	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{N} \\ \underset{N}{N} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \underset{N}{\mathrm{~N}} \\ & \underset{\sim}{n} \end{aligned}\right.$	$\left\|\begin{array}{c} \mathrm{N} \\ \\ \mathrm{~N} \end{array}\right\|$																				
	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	N	\%	응	$\stackrel{6}{6}$	\bigcirc	은	$\stackrel{\sim}{N}$	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	ल	¢	\%	$\stackrel{冂}{\square}$	2	$\stackrel{\sim}{\sim}$	ल	\%	앙
	¢	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ \hat{0} \\ \vdots \\ \underset{\sim}{u} \\ \hline \end{gathered}\right.$		$\left\|\begin{array}{c} y \\ \hat{0} \\ \hat{0} \\ \vdots \\ u \end{array}\right\|$				¢	-	-	ন	$\stackrel{\underset{\sim}{\sim}}{\stackrel{\sim}{N}}$	N	c	$\mathfrak{c} \left\lvert\, \begin{gathered} \frac{j}{n} \\ \underset{\sim}{n} \\ \hline \end{gathered}\right.$	$\stackrel{\sim}{\sim}$		$\stackrel{\sim}{\stackrel{\rightharpoonup}{N}}$	$\frac{\underset{N}{N}}{\underset{\sim}{V}}$	¢	$\frac{\underset{\sim}{N}}{\underset{\sim}{v}}$	-	$\xrightarrow{\circ}$

